Incorrect Password!
No content to display!
U2FsdGVkX1/KNRN4NeGYqm3c9xJe10Hxtxyt6m6QT0Eg5PhmMiilVSWQhp3aVgGDeRHhqi3fgVDSzt+a2HdgFPqcoaPkdGUuwi1siOrJWb2d6qBel+zkI4a9W9HHsjEWtCLq6/WGjFxvxx+9p0v9VNFAqcPkxeepmaiwbpDAIVhMxrCTUAoZmfbUgQ1Metg7v6WnqMURY5Uy74Ftc9Nn49BP07wgMd39lZbxh90GhRPp8J8j7sxRpaDzveSpDQ2zxeyFFsNwhqJxQ/RYCwXvouXQEOQZDL7e8O1bidjx1g/AcDFNDrUNh1Ln2RlhIlH9nFjwttmra/QTtkVladAmSWKgdvVFtz4zjF9QfpStlbznqRGvfpM3K5+nGUWeEaL5A31XsEBtEAvMV6sghanRVJ2p8ciOeJ3YHDKIQ8aVWyo+XxDzgYUg9jzyXKZ55Qn7ADo04rKVkFyg7n6vrGCgW4uLKlfTtxZ/W5HRsB5kc85f+NwGIpwHKUmv686/IoUc9Yv7Li9UDwqxOg89KzCPdxZu4pifKN+L60zPzPNHSwPnl37pdLv7u06MdUhRZaP6yI6kFcX3NVuxtXvDRVEH3eneRfpU/jz8TGbm1uKT6mv9vEdHTN1OjEFyut6l1DuyzPjgVLQhsJFoPRzMfc3evtw0qR477jMbj/A8EanIX0uxECinoY5hgNN16kzMogtaIxJEsNKlkH/HYwUq3XHpHSxiWittahe8VTFQAlz5T2QN73gsfAofW5u+kc5TwlyfM7yYg6MzxTSgfGA/fvyBl8oCC1K2ekmOBo0ncgKgvIXlGxf5Uq17sBYQNPy1XGrlq4ATGP3t2wpIkllF0QylJqqqQFdBq0ZpwLb4Yn2TPMGbL7rkzIaiaRiLvTtlvC0i1HC+YKkM8idmXvrvADnwEjEFE96/vSJHS2CnVd1R6W9qCily5r8uf4cWmC/oMI/QGBFpC3QJLjcduDIj/TIY053LUglUBqW12esODVgx/1NAS0+nWUR7TAhXY/OnGBcY8B5UKPqHa+VVL4+PIw1bQSPrfVowiY3C9NlUoVF71cN23yM+27JFk89fxjIUs8bx5osTFn2ApuJzjlh62DMB5kQFiXXx81vztNQ1j+NqL080M9a/FUGkuUfcKqEfnIxYxuWYaeJACA4+f7DEJzORJbxpJOkE/qGcD6tFpq9ntch5sVn+tBWsk9N8hbFcWGPdh7USeJ4CBg+q4KNxnxhkxDubURb+PkjS1lsTpClwPScVxRa/xSkGOYTctcskQ6rui7Qlp7Os/KgXBlBNGwTHBidKm64krLZ1OYHWD9GLneV+wWTdIzC/ggugT3601tWPEHxsOPQ32v9MP2AxmWyXGs5T0EwXJyhIfD9sWTcCtEhwR1GIsyjmousPKcNKyMqhBx5YeywfMMTEr4su1ns7/Rsg/PzJF18HXt8k7wgBMAPvC+A7lWxeNJw/2kFkj5/7gaLcUWwn6EbIs9Is79GKyjX+kpzg0Td5dYmzdlVN289DecW8u9zxgXSpA2Mo805ZQ9ODPW96TRm1VUjb8Ps77hU63zyf/g38OxyM7BDCjMU6f4Umw3u+erlcz/cl41/5g0jQ/j77bpvXtyqiXfgc3ZXkEzk6F7IdNL3HsBYHIQKvVA/v5dU3GwB7xsOTXY6QOGcjhES+lhmApOquFaYAtPkSnvSHeWClQAtF0QFQyNoBUIszBI/E9qTsHzWKEW61PDh4Vd6LYhbV/ZCef3hq+9DapFA9q6n3L0yyOvrPq43czFyOuYE4apKYOqepAzL8b8We4DgoiRzqq+C7GNph2FxbyBXukyT42lnBK5pLhtD0EJDSEloSw3sdBKngwAOwFdRhQWq+CpdGCYmCCMay04EFfkebCLjWv2Wbr5a36PAXHNEMjvTt1Yse4s15yEl6iyOZFeZWrBIC4CBzubRbWKYIfGTCSI8dDHigsPlK1BQOZf/Co5fUGuzGOgxKtjfeovI/+O2DQoIRQgljIojb82lob/Wiip7dfxdxVuBOYLNhNCSExNT0KmldAluBgkll+aqKI23KWHfLFZREz7zemVPf3jAa8daFJAnaarzDabYuaYjrWt/YumxLbfK4BrAiaHycDhxaGcZth9oFMZHa2xJ7h3A6y/vrQOYfUs+2DrU8OKGwF0rl9qO5qwF26HRu2Zhogo8G2m3DGy/M/jS9u2B8sqESQfGTrqSawHeV4/KCNjn321rZL8Fgc7hUaAxV5+vvehBOJFSCItQYiIRjyG3kt+AFyKZ8GG5k7ic3GDz2PZCxu47ScABS5bnch+AVJbhzgZtRJZeYqLUWJa1ZDF2gFPzA/QApf/6yt2tb3F+x1dg3fJU8VnZ+CYco2LFc4D0w0oQdFR0z2zdtvOvl3rL/vKOFV/4q+4r4kDmef1z7iyX9waoTg3D7p+n9jNBCTLbnDzx7o6oqN8fXbQvnuv01nzk8d/6uAqWKFJh/8DGlAja447wUyhBbDerCPfo1WIVsWuGq3gvv+EPbDQK2I+RAzXFD9/9arzQNq1g8jo+VXJgt4pg797b9J62kGDEvDjtGW5PCJET3exm+WZGBbsPTnf+xsHPXkXS4Ut0+UTS8HSUBQ90mn6qpQH2WnB5obhTWv9e9Oc00OTIeNQqliy3BvXahjXE9kkeRSQS/OWpfzQmHIamTxAFiwM93/Pg5vMtlpGdcGHrwBOrZ5TQaFjtrWH1z7p0op/lwUe5xx8fvg5EhmARJ9X5Uz17AdBHIgBqAqCJ6LrKRnWJg+A231nxcPuDTTAM8/POiRjnigTom/j3wtJiMeeu+WmQaZ2LjSrj+D6wDrLHvtg9Zzuet5pZBzdjhbwKpO5J8oug34HdGg+WY8tbZNXIf3Yy3r0UbdRLhgwCQyRbMK23jn7fv6udHQA3FtnnQy/FlDyW9cRBnvnD9SpN/DdI+NaZXVjjvzw77Gl0HnZ33LonW5FcvSaCMeWYR4p8EwFwX58Mrhh6M6/GqaN+Z5My4n4SPtWMz+pjpf7Ppvfu1MscMttR8U+qHKrSuQuBX1oBh09HcMe9ZZEARjW9v2bIvZccLhYF+6qpxIOIE/tYihW8ygrSeQ/Mw5C2EhP5kED9NTATm/CqdlaauDirBYd68grDAidflTCrX7kvE82JEcQsU+iNDinq45ysbPGsyTSPffChDUf87CDcZF1tf4RYtYrcRNzRvBMUu0vqT/leqHa9Zvws5J9th3/3B5zH8ZuoEeq2YMcutEU8tGdqiRQeRZfqbLKTcMVq1OEok5FeEszT1vEPlfJii9e0dSJ5MXvGoMRe/TjbYesKSqLv5LSFN4sK35FHIGYtjP3eutjAT0KS3s4jPiN1iQ2AHONPJjTcHDJUsjVxXy6XTQ1O6OC8BfCA7Izs3X5RgKLQ35TjonlfzYKKQPbRRfVsYsTJQT2vNN9fHaMPsJ7HUn1ovf85/gI0FMI6DTenOBW7L6memLjJE1dzKkJvB5APSA7bww9rzTEgTikQ5Jnz/J+hMMAkCJUUEvV4zxTntHfuLY2ei1bP1ekW/WQIlwpB39sukFOH+0U/uOZuA+XBuBrudO5aJbLBV88uRuglANSJj4t7RyWvoOesX0p7S3PDNZG2zXofClbc0qbVxEuuYzBnx46iqF0WhgL2D3LL3eMFjYJ0IqNFZbtIyoP5f/W+n0RSlfmOTCaEErc9nJq9z3sSpiz9Z51cUoyFMQMiMeFBqauNZN+lOXkC/s1guvfLJnl8ETGRGb56/tv083mos8eGtorQCqrEq3JdZ8NfgBctv+J+F35zA2LKE0lMPQQxbjNZhlU1QD3itF9A2CkXeogwgPkeoRFSMMyBzclS5p2l99J5iU2b648h1Qeo/Bmp71JqhRLyKji2EbSSc0uvUrjDg2lc1SrmrHsoOAsdpWgrovjOdBrLb+Xf9qMeii5X2UxcbLdDIcBqwXlVYkyVa913h9irB1z1FxPRzDfY/sgg0PPY/tLnq4WYhYd0zRpnYuHS/Zrnua84DfBblVam2JLIzrvAcJrGeev0IZgD50BxnD29grc/rwH8ZRsscSBP47PWu4WSoq8L9cN5IqixtJ53qZsAAuHKSGsv4jY1aUZZJ7dDOXF1jlWMIghqMBNn/zA7x6y0q8AbMu2PDxetu1dqDwolGbMgOba3zfA8uU22A7GoEZYs/ruGq3gCjLll2kXRANvjkAF8xKFeLUShIYsnxrS6DVOO0Ma9tc0hnh069rjDm9OqxrUtf5ceGBchjFKTbtJSGT9+8PBv/mJSt52rICzQRf8hYi7zwgaJ5HzfIGxTWuPjHCYvJUgJy5YsfH6XBXBMEji/2nLHUxcu6BjQknaaGrhgI7BqyCFSqBKh+WYQzVe0IelPYOHAxKfs2ohFejzLrubrVv13j9G1xkYAM5ghml9JHCVT4qHU1pGB3arT0xlYi7iGPl+7i+FrTriTup7USOGl/ZaeeJMI8rSh+xzJZDyxFm5zHWIIzZrduxwLnVSkAJHrV8wSsicd6+sN9OcvSeuZXGGFcNIhTELybMgPNRKEqx42uSIF1yzaOPTZQFFvEGbOVk9CYnNTxkrHF70yz/VBNSy4ddpvh3xt6vmbtIVdT3eoVrtuVYEJPo7mmtbcoeOh/Kwntnq5fyhTRRkXdq8o49FDHw20nQxWqtKBuVGvtv+po4AtrYgIbsle1JkuNt18ZUu75rvUQW7vLV620dsnsJzYC40wn/2/U6JkTQSSUue+jL1GP+4FVWMY6YrA4TOgp9xtOc06hxm970N5DmwudBvtsqxzxE0wU3igRvArG5IGcTE2gUensztwm5boPi/rWpg0NI5X3d4wtGbfS1oCZQiRjqsG69oFv8qhn2M9BaALBQidiC850GBVF44iV4/56O7rVSnBp1fdb8sp2UVsFclF74oI1ONUc/XKy9aFl5oIPV8OaDUyojd631wrij6c54oJWwIJw+NS6U1id+PA9+kULuAs+bT+GBZiihy58uF4yuyccy8KxcAIGWZSTqL51h9qa0K0jw7aGnuQ2pXfbxG5HF1KYUKINRQFY/o8lWW3NjE/xv9tymtbMKC7I6im063K+u6gMsokRlRPA2yk7TAzC2UwMbDEoehm8Oe+bgXHM2P+iledg8w3jlxp9ov/OKwk/FebSUta1zUXv65x8u6ptXJOCaulGeWTvBuwY0VvYrzDLXkTgvU6S40TH6A5ds620sZM85iUcGDZpXlx+/SzN/R5c4zeCUmmD1j19MpKLfBwb9KtH9B/jDZYHWZtrCiCxj0Siku0CUpviW3nUXvNR6sxNSwFRquvlpGmdq4Qmh5JvD2FOLwCybDRrXMsUjCVebJTvBh+OLG83pV4lRzC+fc/M8mEZFBPDUFC5cGfJuNfxvBf6NtZj1zmFHmm35sjpeS3rsm1YEOKMM3tHd8USyUDp36/f9Gfi6E82/drDwXjwIgsEPybLnewcz3t+dxVRzAISFFwWmkCfyX822Pne+8Eb94LkG1uyco3fTQCqxefU2TmALR1Q35nmecpw7rvEDaslfpt9rBBmTfaN2VWKW6W2hLfP3VS0MsvJSRdRgTIMdAMnMWA7Re7oHMF+gjWgb6GI6IeR/garv5Q+5Ze1Fm7brK+EB4hRiXVa805AswArN/uvE3U1gI51X0GzkEm+xRjpoXges3yAKvydaZ03uOiVT2D3tmCPDs6wOH0aWc+yphKk0B1cYtDE7b3nc9/6h3iRcniQ6Jlb1H+h6AOan5hVXLgFjT0h+2IcH6PxLtnZfipwraKBCPqoXhu48toVyRJfswH8V+RjiYus2/IHN+kpZE/vzrkgMMfSeBBrFtr+JeEmGojkl2Yb17DfrDN1wxbC4iVtYdiPlS/6bXPcR6XSQZ67kZOiypbCfaNx1gHc2CSEGG5Akp2wX4oMwLgJrotqOs1dx+jNZ3t/mEjGPVNANW5vqTtKOnsYE76h8DEq2GAHEKExRQeNYTPoKkHV0Vkck7ly4svcSkMVPCMPUNy7+Tx16H/peOozsjU69l/3H5o83zmb4g8pnUw9rk6DKCyWbK3PhbOgJrR7v6ttK3Qx7q8dp1EFgLAnZMT+H9B99UEEFfloeQd+ggCZvcAfdesMxzaRM2e5WGla+waQHHywe0nOKwkvd8bEk6kIJm/zgfr60zWmOHWRUx1OPP6lES5ljsBZON8LbKkWnbn/g4Zkzb+3RdEpRwLDH48f2GhntL67avrHHPe3Kuz1uf3iTAsDLDuRW48BVFJjnVCUYhaS/qptapXri9RG0l3LjDy0RgZCJFDv2XK9Hcz5ZfYpMBOHSssflfz5NoAV6yOLkZln3biVYemorlj+/5VvO+3aeR3+t+dCw5Y7j2eqiukEV4WUTn+sP5xLp1BBL4NVZzLVR7j4uJWa/81Acf6UVO+m/vVBAOgZ0raCDgYzPM/Q89lMt+OxA7m8w73XWbWMDCDywAQPBWvg8IDqsy4Apk7Pl8a/pTDWeZonxEDtbVbmaL5EeOLB/c57nl/AZ6TyNvMRbg2IlSUkcu8wmH4Z8mD+5BB2Yf4RHFaweR0f9FBh8k/5JNVisW96lfx7KPHrRgbsbXumn8pmBL3ITbMgB4eIlBgVzmIcj2jv/P+9/UpzB/KccHtIXZxOuzUIoFm28Bs9Ns/AnAdQ8gUZPg96tFFU3xvuiB+nP0vOfv6+i61vrxbigZaFMQjf9EtEaaLc1z0YQDY86ekuklYwFjZ/oycZffO3z1upwCYq7/hVDlEe9wJcoVhgp3V1h5bvS7q4/zuaDCoid0LDHGPGaNnep8V7kdtD49aGvikhqRB/M2qT9b6f2WI3ymYMS349BWfGaU7EjJ2H7vCarzTh1rFFHE/zzRGdEl62rKvueCMe+OstKria5K7LkPBPHT+aSg42ZMH5Nd/R6JjODhnGoK1KPC/n43qu0dFkw5UQD0viAIZfjRBVB1846NlnColy6NKQ8dBFNTAjiqeJRKpRqQpzuquu7O1yuYq9WW4ISFbnps2qt7Jp6N39tPeD3PjOALwtsyGWPc9pJKSPMjKkpPNaJIvWnkNxIG24DZCaW/TIWtLXWQOY9E8JD2ghfSJ4X0MzgEhPb7i9XX5MIYpXwvCMyRo1B8CdtVkBLh5lUtuSIcwQGfPe+NnUMaD2RBPw4vGg6E2q3l+2oj07B4RpcjoS/Jwe1dSYshRbtm4qVLC0wBKrr1W1YCzd/1K5octKV0IL/vnwmVKGAVtnUZcKezVRkzlTgkS+KcqtYXBqWEZF0xX8shzqc8KN2QMnDrE9DodCdAa45deGHubrCYPtSrkCdIu/bA0JtCpxw0lQG3JziXlUSM0/OlGS9UZaAJLafJNX64a2hQmI7eeqiRAYpwr+mSeef7bGOuk3trJUOZQM8BfQLtvlDdIY27wQvA5DzcJVnt+O9Lf57wy0sAjrgLiC0B0NwliUPnwWGW4JOfUL14FP1zCCYPgWuISJBLqNY/dMk53uLChuBizwuctEmyweNTUpcX+cIzReEGUt6V8mLX2f/z4otg1SHoyI7ajYmqwoshc6qpPl5eDdyQuEVR/rYlmHfIuKTc39CVxy6OCu47wsCb4mPEcQslYUALTEOaYReFt23z9Wa+GnvPIrIHM+KfCr8Sf45tV4bjdyyYjLayCkrkq/uhmQ+MBWHxVspCck6iza9kg8E9iKc39t70Ja+KtzL9otiNrHaX9H1GW0XFHprji70rnOEUhL7C6E5NdF5tRs9cqm7L/MvmbIO/0Lx/rWJqqmzW0oyywBpco6/8UNUKtKsAkydiBYmAHCQfE1nNDXkDHFyRwfYwNwKCOUkjY1ksmZwvzAeAYQxd5P3Yhbn74YZnZIPZFCV5cuNaa9HQfbA/jFBxgznJVmBxuxeTfQURovQ/SL4SPVSBlrgWpvJKLoARYZsL4qS4nojbkNpx4NPFZfUT6QgImrMIqfB72XsB/nyoV1k9tCfTgNKUwMr/vPh+YRJmwIa2Jahp1sNsJza4mFT/BNCDwpBRCjA0GyoUYk5Yf0r0GEdtQsPtFXJZNsfzISPtqndjUzFSX0vX3ecAqjde5cRyWndDP7HHMX0oMkL5txZ22KcghaXYQz7w/DBCf1Epr1orJI5zqm64lxCZRm1rDQgyKo/RbU5lx1zVwnHJebXlq1+ZX16DGv1OG01QXVs+8h2flV0W5i1uEa9AOdyt/7Lk+TMPkSsqd33YgQRwRngFbU7MJM9xh1oginxM4gU/pFQsOuEw0MvO/+7rtQTYvapPToKhWw2Kh1gyAmZV3oT+SqEakHo+ancYl2Z4swcokhSJWeFvyIhPLlK7UEFaVmsZYadrWFZMseWEWVHbKBcI9OIXMzH0KeDE3qPera3JmhqNQLIRyhIoTem98rYPW04ztlDhOmtEWYUkOdORPnqI466XPeZGYcRe68fF2eHcRjQIycG4XN8oXfUBdY10UVeT5T64pOPR5OLvS5c1onY3x14TWcTuC1BW4J7WUVk+5NKH5V0l1fWyWorJhs1RPsGYPtssIXum1q2tbZDWPejRmeQz6zJ9gXOEBaz8hOlLeHxt3DtZut+OqcNtXIxZPXcUZ+TZkKhxd75q5xgYan+8WbCGBohOc8Sg9sT+gLuSp8ogf+bj7DrEBdLxCmEH0LWVRIoNRtnAKy8uM2EVos8+qS9w/4uhUcCFulBRtoeKzcB8ZIfznF2Ma9lEqnsSXgJJVC0amsAYCSdSjX9Nr2MwCsBYd2uSPKEd5z0jo/C/gRaA/8TAT76shg4wURo5yDxLY0h+pePtC8nb+1FbyDIXyMFQpedfmyB3+YMF5Rbn8ZIaDsdrTPEaYQPJ3MgDZAmU2QOYhTR5YbVpvMFGaj+WV8e3Dr91xEcnxmgaRp3l1h7bsrFEJUjr/NJBleh4i10UkOf1shQAyT5KZm4vFnwA+r1FybdUVfsidoUN1rKN2SADnDviLmlcZcbYk20ZiClwKnbbtRb4ZefpgLBnLAlEBo+rUs9LVnFiYmwlc0tIyNK23MF8XdxFRW/2eDdAYrRkcdyENx+g6tR2+900nLpsrEz6GKgvpeTWEC16jWPV1iTzEoSa0epmKaJfTOjk5Z7kQQB/TLD00Bo6DmBTFedRbgWD/bJsArzrtsoYtOtbigRGAbcvjy9I7h3pUpLlBIDnegSfET1g15RLOgHcAYtXoeaYvHf26aryXrkjjUq5lrWmWjvRaJjTl7d04hBvJetJ7i3zCokaNudCIWBw+INLxiVvHqSgdWHLFGGyCAVhqL9UZygiMBnX1a04GHOS53YahsXTKcOu87XRULZ8R5StxwljliTBA3RaFc6ko6MN7whZmJjfFvvsNMM8hvY4WILDsUfqzgirdyfM17QTQJZy4aodMY4+OMVvPJvtAonScssB5e0PvJv8vqa3aKC5r5ksdPMSz9USobh+gpmgMPAJQ3yRYIotztvfvuklAh10xA0rwKRgqFoJvq6/FFwcrOB4/WHr72BEz2BJRHa81eGvq/WYJRGkY2fcnnjPwF1D2fMJPhRAYXdTLx2qlAeEfh7wOrZzS0qEP+hDdy/uvEHaYFspdcZeSd13aQnOmBMeWbYZmN+iMbcL4pEJcNtjaCB1NcM5y/XOc4jGBFpPSF9SP/jJRNIMCh4onT/gDFXS0imWGSyVmgJ0RQYMGPNyuiylvrhKa/SzRZ4OV4LzW8PTO0Mfa9HG7BT6jg1001dk1IB5XjDnOTXeUZzhAs4+L4X696GkC1uduLX7Hitd+3/MU64r4rkoiQTwFXuwa3CULQcZ1LWyDcDpYDp4xDBThT7KbWK2ncv1mZb33NMy/sxF5+VFc0Rt78xDwdu5yjLqnauEVcrjG0iRMyiZfPd91QbuK5TQ0ihMSqP3Vheqi0ox94xcWKY2kd6ZKUDwak6oeJ8es0wCstUDku9BuiW2fdcxzoO92u2KfrCZ6nYv/i6uqCBuI08GcJY3BCLvnfI8DzCtv+IcXoCyROrg3sf64mYsGMldBKEQwD5KDJ5gzZPFs54dpja3URKwVTgIts+iUn2EUEQ39+Qu48dv0XveuoPB7u3D+YkoKFIhsixIN69ohULrZbZv1W7LpfJeQqvWXZpoW+3dr2oJtLBkV76+fVxIPxAnmfolrod0ukPj13r15iezLzOyv6Mcp3+RvkH+d6AaJv60z+t94Iiie9xtJNFFXrn8w96sWCSnwis3iNFrOKlvFc7pVhLC4yTf/b309A5yHOLLX1sEXKL6dSAsHYaIyLKaI+Kh/mFJ1hbO3M/1pM87UFRTAN3N/ncvPbO3muzrbRGWuENWAKfpR1u6lMKr+GiaTyeGTmUCEoen8+DCXTn8yX0N1Oc1LUIO8hm9LAPtYgIlZEVXuCMkuj6FxHbScLuy7U+MMYsDPJ6hNeBCD43rP9qD3v/DLFL+ssSWwHGQowYukA7E7zY/NNmUo1ziXUn06DWVz3uFY3os9Q/M69fuQ9wmrC/UPu/ejD0M+uLmP3M7SE79g1xsJRc7QgZCyGfqGA51s0p2/Df92vlhwciTvXHSTvlExa8Io7y2C2H6FNLX1165ZMBkkVRcUc5IKi4SKWjxFeo+umsTlHRdg82qr7SwVjQHx3AlLC5wZcpwY34cUsKrGK2S/OAsbLIa2/bdqvM0H/FR/aP9ctD/AnTFR3VfSfKFCsyBMyyyioNECGqVVBKFuB31RoUFPC3lLBGU4LccwbkRLzs+jjOjt3Wz1Spz+OH9hqQDPKVH0P5cbUUCSLSPyZ7pYi0ncvPl/6x+Trws2k0v5OJpUzvjDSnzDE4dBynegf4XHbTD/sLKGYDhTp44x4mRmYEVtqDG2CsoAJpNcnKPvDTDTf8iaTehQmJOPa/+dK82PD0KUJiebfUHYgxRyObzQ+EECzLMpBWAcUkFbAXCN8qX2/Nj0hJ6HHROAqilLAAWPLKheMUT6OvXdw7vp3uxQBN1ts4Y6mxRYqrZi/76br+9pzw7wzTglB2HR+3zoTskqMgVLZshpKPh6YGCAcF8tlNp/W/yelV9oyghlN9Tf2oMHeWgUkIUfgYyiWPH8jU98zCmmk5OhpuNmEA+g/iXYoKXixZWTL6G5sFDNsAqAj8N14QahEgfY4jIVB/7CrgBpZ+6V72WA3xXamPkzDcVnZ4CzMpJLv4WcnsAS7XJ3K0axMY+pFzejnU3OoiqH0gnNKGhfgRXtdRWI6ZvFLJXnCm5ZVra4FRvkqRw6tXCMEKc0KpyoBMTY7uX1K6tLakDqo5oXFHtnArTJXaqVVujmCVaGe3K5Wm5tuSeRQZrAq2CXI+RKhuAr6Vr8YeJnwpSt6kB66DjFJO1bY2DPMg5eMvitmaLhlXtYgBRM1ApEFRQPnbXyrih+g5+VBf54/dx6q5j16TYb1viuxyPoH5RgVj2CuT/iSltexP7m4sv45DA+0ojSaaK0KYg5k2OCubagtpLFfxYzMmq2TA/O1PKAh0YMcd4svzdkIPBKNHAxFYOMTdz6ayLL/4SP9lj3vC5bbpGNXRS7+qLGULtY24bBpX9Bd+EvS6EPKby1u2abG4aD8hbWIHLyxPok/rfUrIKoB9VEYjFNsL/C+6+2aFOu6+0VnKnPUDO7pmT/AHLK9dgc5M9lL24vfZG3SCrIp1p3VH9vu/Eo7W2+xVTPV55BO5azo+b/kWA8kkOP+80kjHiw490Si7dpjFVnMXAxALcLxYkLM5xojWqgO2b2yWCrdp/A4/VLot2roJSXFwxA6v41Kfm5Q5ioRBY61yNzg0OY9xuJ7wpQs3/WuG5KbjWTC0wol5SbRvcjsW7RGU5p5CRC4/5eUJl9n3ln0o99PyXGPBXfKCBknqH//8HkODxP6uMXyG2l9XrxmhVFZCztu3DQd6oqHNvCLrtA7ojKkcZYtXKq8+fB9DJrT0E8tNWwYOErDhblTWgsIhOVOuIOfl8AsKTX0I7u79gKCjJ47XVUysPe5wuN5FcuQyj60f5+rTeYyWvpHUt6TdjbfP9snyQU4+qP3wu+oFQpA/nmHIozPzAyALirAgvkNvryc43i4REr5i0cJ39dxiX5XdZzC0iF+MqvfoJpTIvTbAlXlSjoec9O5tJscSjLbd8fyc+hXCCI8S1xxiL/YQDh6W2UZChPXXHiU5URvgzBNqioMI2OI6aVG3iIohyrIMys4ftIcnFypaag4u4t2vrjHl36olSVJyBpFm8JttYJpv4KZQMvp1A2b5RXb9lLPVOEgr3wxWCdbyLeihhq4YMJmVppKDfMoxoywhZWngody+Lmhlyop0P6kPoc9PYc/38qfN58ClH12q0N/xptr3uSKFdFBx64xvO3XleHHvvN1VtU4u/fHGVAT1OLb2faR0ezQD345HfPkr5A59Nf3XhjnG55xgdC3P7jbldvIBxmt5kgZTTccYN58YzvqdGUlfUEOOW+z4GG3WOJpGD0P4qkW6nPtu3TjfOmgLitVNShwEOhULUZiixgusnDUaHJrCnX9j/45OREtn8d/89h9hoxQGS4kua+9mZYQwa2ACuuROXnjI4C3EomVU9n/qKeus94xse9iMvtOeb8nlLIvUrACPFcB25/8wCWv1e54V8SBb5dCK20J/gSVTZ78YycoUD3JHgvdsJ5xCAlfJ4/gTpDNTw6zGRiGwkXxkxk8FH3j/YyhSXTu4Q01k1vhXNts2X5E5vDeXXjK5sMaSduxU0yZv9VufJ+Nmud7TpBkxKCCLwVF4M27NYE+FweJRsPUd8ZCM11biev40n0ihu8m4HNQnqvFtvC6it7v3rk9yVUAJtQyIThFrh4K8BnFWu6gVulf9nfG8aRAjbG0K6+jB/I/OpwEaUDG4utFxYxFEPmMhPFAYHzU8s+zoNOeUI8RAKC/ksRfpUA9wz+kam5HRwn7cg8OKQ/tLszxsWEWf4yZX3X4evkslPCzVTAoEwR+LOslpOh6SY6mmfqBOPm7uGy0+/mEE23VVIrBxkpSfdzmbhZ66yFbJt/Ctwyb951QVqRvg4X6uXfE82Ne+xt/ywj+K/cOwT+sDgoLbX+1hHrjkpsxBPjiHj0/AfDvaXsO1t4UCv/jW99bBdOhgeNgIsC32bwACwWO/cTL1j4NEIvye5u354vYtZIiAtvuzUK5CjzkuPGlciS+/Yi1WFa16Q8dd1LOHi6vD27GSwoXlRjy2U6n7VLe3f0cKJ8/5bXxCKWe01vMVu84GtJhUgZayrnQPqTMXriwIZs6GQ9L1opp48PAAsuHV2jF2QKyip0Nv71aLbWjpvZZgnWqFtitkTb+iLEtqom3oTm4CozlVKackEKV1Gm17VLLqeLHl2j4ZIzdEYtG2VvIqj3C6Y1fHCPdFRqg8up35/pZvtJb5Mrzom19Omcn5CG9Ti1741WfdMNemERJU5j5gBPcThl27hPcCv1kiuLTgvwoL5gd5615rNkoVto+FVCTUo0VSNrMUDhvO+wV0u6MqLO60fb2qw0iRj+fz+VxsR7vgQoSYg1er5DduIwXYCJ9j3KuHJLEeMwK0AluUjE5EqKv0rzOjVd+Jk2eiHcDeNuqv7N0h5Ei4ARaYSBFRzwP3ZaXWJTqnlmefAxo1jvyStfmlUTsM1QuSx2ldzGAri/7We6Sk1fwZfnhE/d0DEkRMQKzvXye+NW6JeRntd0LinqQZh906RV3K5tPkObWBbIUjYGhpnXIQCuRLJgs3ScSjJMM6mqpFLeram0Ac8HgWxaZ+i8xZ0/tMep6eo5DbAY6zdd22gNivlcGOdxqH0bPg56hDxQxO/uQJMICmIUQ7H/zz+LWzVq6hEmi6eQk01P5OOwPQa3QDdjofkWbE92raCz2Zw/YGSubNhJMbsEJT7pN7ZQrUOni0EpJfpBQAMZRyN4zI6KHOKGBprEJ8HdbbZkf+KgRhAabM0SJnrc0pbyB69deQaHnOxBySk/bY4VQx+r2AlOlK85rjhIkBx3/e5FB//ftlQiVZgFd5/hl22IXI39EYVsROCBAGnhQepadsP9z0CTkVISWeMaPSYhyV/PQCoqnXCzWeL7dR6k8r0eDb1Wf/P8QHlXAt576Z8roOj3ykKQ/PUvxmTQkcrGuIePabHcJwNBNl433ShpyPnzhzTWTJWVIAgguYLJJ4xOim2Brn7/KdxH+0aC8OpVjA/85CeCuJLHiv/4EMOAD7Ve/XCTuTA5ky6P8/Z9GQwcYPfDu8ZT57j/4qypO9oWo5Qm30RIPPl1iZ1KbvI+yxC7h0Ty5w7X3kTj+H75eXicQUAgk7yNHT/To62206FzQd0J7SOMrIcDWW3GTruAbRRZHDaK33n3BB8R4RJtLQA3SG4/aLF1mE7Dy9UfCEmwkWcvKOFy/xDM9bavP33ENSCY5+ZSDzhAUuUuxxp8PePNCrKdtEup7WWf8vyUNJKm17klRB0719MNyTL+q/KYRJqM9n+fgwHZvvzIVH2lQ1AzUPJO1HMwnWFse52B9Rt3XajNFMJ3nNRdTI1vCW4gsQwcDcecB6iGZ4HmYihybFYBEXpLnzVrtUbVzLdmXQ1T9CJgycb0q9bmQb8zFe5g4WX4H80RKhVQrPtOfyh8l7/FnxoRM25XtvMhJwyOtQtT9pznQaxIt5ejJZ5fpycv1RMhv4NgSjzAGNgaWaqwjxib3js2H4ZB5FUln19Da6NOHfADwwYr3Aiok/pFQ+qK8dgJY9fTiDEGFeN9yPzGyX10p6IFVgBk8oUtuuh2AcUotjE24IHsHH35UyesuwXkLjV+q6JL9Cb4rZQTDQPbqo/VxY/v5fVnIw2F4c09R+QA1p63CeCLGiDUGc281Rbr+mH20GokkpMFLNaYbJ10zoX9z3TZh2otf0914/XrUECcU70EPu/+Spy7othMKDBvcW+VqtfArylPJWaZ2RnevbTKlJWjXyd7AkVJ8nO//lHzjBaUKTmHLBfDobHj77DYuwKNa/6p9JpXBShoVDCW+wlC3c0LUc1Ogddeqp8E0ozbxZPEYu5602nGy9l40jiTJdUMJjcaOey7nOQOhnaA4dTbBK61VgCb5qs5QZxiUUn8yKhr2bCS/+Z9EEVrIcOWXPROYjqjw9qm3VcXh3FlqLfYNQVRlmA5/ukCpt1+jGTYPijX8GFIbPC0mAdDW9tncgY7yMsXXErw+QERdz/KQTcQKVp1kGWBAaKVbh9ZXacw/I5hc9lwtc5ziy2BacuG56oDMQB9XoayBRtaUpq/nSUAcLM6xk0JU+nqVrL1fpPrSsw+0iQPKhhCOYUkGxypHZA9/4IhRovwXtzWwiPuKcBnDz+KTyPNBTxS9WPtd4n/DxI4Vtk7fsJ/325WR+RTJlbzck7cXcqYe3UK5gGF4od/AKZPsluX+CJIrVZx9OG6462k3XEgrxai5G/HMsGh4jM26l4OOaCkhrYQepLL/HT4bTQVgG95uE+N37GzrhmWqNwRJhqNptcRvLQ8TJogFZbkEpdO2UcH68BGCm6RCK6TaODOmp72WHEqBeHjdJxX6DORVVKhzsbt1+RkJlGXjvVhai723aHFXfQV8yTn6x3w0PnMXxAy6duEii6p7JumqbcuV6jQhw2WmF0C+qsfG+j8SjghJusZYYmFXo3K4kKasv7on8944AkfgswXqn7J84ntcwLipAUhX9AcLeAUuRonLupxBh/726Rj3GTbIHlAo3R1Vchbsnw9SB3RNrG6GuVVfIfPOkZPVbMJO/kJIjuFlFTUrXHzte29GUyMin8HQm0kKW5GxR8njvObZzYDbJBX86wbH3qwqQW92jlAk7brlL3r3B23KB0iMk7aVjy1s53Wj2iSuiDVXK6IyfWveBabUQ9q0ZAci2CL/EmSRcPwsDElTn95F+xXc472gKr4B6hGgYtyMIdFD5O9goAaPD3btrfe8oyOjW57jHOBpf1ahnFm3xx8rRil1o/eM+UVxDGfQMMJvDcCVJtmG7xJUU219erZAgyUGUCkHd9+w/26+Z8x8cYDfmMllD8UYQG+1g7Mb6J1es2EyTo/JfC0ScUoL6Q3rl0L271SaXMDDmcX/ZnVf2rLqHIG7ij5KEH4T3ifdwdnDVHiyABcigdOnWl5NOjpSANkjW4WxIQTtpmw7Htv4zySucsnFJ58EeZzZqRcWIy8Ej0yBRUNnUJrTugqp90BWl/MndxPv39K9l2h70Dx0WYRI6N9IRM0oxIcpj7L5yJU1oLwU8GivbV3fmEho6/tQGCPCwrQxEdL4i4si5MmueHhMZUZVBogWUuInR98yuvAGj9iOuShpBDT14XKFOXrvFDt5Zhj2pdjkmoDySWK7OJB9bWUGm1l04HRqwpwRW4m/sd7B1Wv3xUBSKdD+GvpHbJF4RXMuH/tPxW9YMwKUAyuzfL0Zk0gubOETZKj5PDY/ggBBaMOG6qtVY5Kt7rYf9BhjOA8AHObG/CUIPAM0Limdf7nMJMKpqjKJDHlmR5MX41r57VkZ/cPNvUG3SPsXwgiOpHu1ISWRwyyJ3Bhopa9N65wDcy6WVCcNRJgAFt0lxJEhY+4sJ7BM5/toV728N/JXGbuIFYWSIj9R+Geuua03HUXOlwG/F/QcFsRzga/Ob3q8uvdYtntVtsavVna6dzRPOokBjbDOHWuSJkGWR5oeLZIZ6trEb8XSiA/kZM3X/usoXZrBKam9BTxczoAEC5NKa210q2Hejn6F+NqRXXfq+fIUrUlAv7wfZTXu+1jLFEJDLoRC03RKTkwso+5qx2gm0AQmjHyJOAtryHNHuRjwV4CqrnlewkVfNI0h7DeOVy25fcHXvWqYmVJr0czHUeUDvJc/OYEIBKPvOJOxLoKwlFykL6OBE1prVLFrJSwGsnnzlP81VfEIzHi4iYFSGkpH28e90bLMmcZAX5E61W6ls+kvcEHhu2FxOtek5zljb1d+eYRZVPAU2sKG4R9W6hLk8f5+721Zo+EAjxnfsdTZvvwJr0m+ZSPTq35mb2JFFlWNY3ezei6Wh+CgQ4iJt9nGbN7R6I4rrSSL9OgrQsCzoUEGnQNk6hZ/zVCMYz00XcPdsNcwr90zIFxx6C5V0Sf7lq2As8DL/cEcjTJjjDsItT6bI3kUtIcJUcOWuooQswIoqaOzJaQW6AnvpFh1Ftjf3gBWDlxqOWH3beMvfeJkRKrrgQX7RGyXQUJ8deFwLFle5S1DsVpHsiKdQytMmYQZFoTT37n6LEfKcP1X59PWnPSQe/8p79oAPOz2OB17BRsXiM2yluHAFKHnKlKy1MRlN6IiU9mAE19HdbI9W3De1LZ9SXXpF15HTFF23pTQW/1XpbmjpcFyzoFbPzwr+oquZP24QzWYPdStYuVZZWswHTWf3sh1QcQnb7ORQQveb49iM3hkm+DDomtnjyGhohbX6+GyXv7Dq/YlTYiR4PMa4IKFYXFx/HqBiQG0p2WKdVbsSDBEKEEdRdHnQaACo6JUeWyOeCacL38ngABP8N/wbc8RtzKxGTmaS2A6PIlJfg3IzzyDO0jWj9ouEjUIE8o5Ojm+9eTqRT1hC0AWZ5ToNJlIE0C7B6l7dGugk9XDSNPdbjMixhPeUv71jvmW4shdAAdjXNLh1HGMFwCel7giOfx9rk8k7PCgBenl4plJGVHqhuCB/jI0boaYY+Cf2xB88luxw74JT6N7I14QH3bvK/dWAzrg7EbeNLKMKnHvSr4UGlnJwRvE3U0zAFY2UC4VDg6nEHiJ8Jb0Frjv4fEXE2cXNyp27XUO2Ql+M9PmaS+GfD9c+Tbunj/ksoDlFEjsa6FEtO2QtHv98iSaIR3P3CwaGksQoWPjM8YaXkD1mOdC2As6pvPn5BjCb558Dn3ND5NCcIRU5/HKe+R9iko+O5VNHzEiRxZot1LGKysVNyA1R+/mbBmWeGSjxDZy+EOwqQUAAkOFUaE5HDGnrRrIJ/MWrvrJYoP2h/Eg9g5IYB96VI8TjB66P0ePTtB4D1YBCsy/BabzeKuI6J+dnOZdsHlN3sRGE+GsZGcGiMvZeqdfduUAX5kj66/AdxtdDC6G2ybrUimctL8XL21ooKkMoJSZOiYABPRn+lXBvEs2Sc5aYvzjlxBt+RlwPFPy4rbYdRwpKb6ShbtJBE2uBbq0+k178869DjMk3qf/c5KTOrq1bWr4xH4WfAeORVeUUOqtjkWmIermPQqpspMxrRELpYNJ+RSJgW1uriq6PKbWvl89buFUV7osHuseg/Z4BWcrGiLh+WZC52qKICFnWtg4Qnyt6eBqG6YO6T0MZItRZCOgywlabmzOOCpz5wbnXe2Y1vCw18vcAS6G3+sqIFmebQo5G+XUhYoBe4EMHl20bKOICDLy3yAHdLGits8AC+AuJICdQmApNpXErZPvWkE+H0jl0S9r9+eD02ruMMWeYas+TLKHHV1RXxg8jymTU02VlfjwdQq5Wsf7U6cTNzWLhfEjhVFSmiNA8Fk5bzWz9Dj0k92zcHSJl1A3jLqkUDPfLKWIBfRjGqgDintrja2fuv+zMl8qh6Lw5yWQH5PjQjxdVtohdY96X0f+VI+kIKFe3TMw4OndddGNlSs99qp8nMiiq4CwgRKdPdLgrHQeGM5/kZf8ugW+4UZmZ8EZJNPxjdrq0IxbSgazNY9jVBMuAGd4Tm005HnMW8JuEZdKMOGbo3lxipFb1tzVSXTUnt45Y6n3TMajvXZYIdL19nN2AYhZxbbOFXUSLAvUyyR6ATfWelUN8hZ9XmkNGTmtTpPvxwBddHEwV/j7HYI1cENhMP9kDmMjkA/IItlxjizBBjja0YgbWfn4qYIzxoFOVy2SJQ+WvKpd6WKosnJ3RXRxs95UlgKTgH3mO0eZFgcRpw5UqSt65yq7IxsUaiNecQj3AFInLoT39KONWops8jrFoJGqKkvU3rOzv2M2u9FPDE9TlnWckEsDkULdJtkKvlRo3bipwe91eEEfHclXkSOja36sEuiZ9GBlGKA3esMvdZkt1t2IgqumCs3Qp506PQJCRs4MQ7z9/GPHbFVRyB1iGAghBIQbJH4BuBvrW56W5lyftuiPgw68dSUiTblAanxs+nOKhuBY+bx+OpUqqCfcXd+jbvnr41FK/JQUNAYd2U2dU6sNAxnn+b8N+2T7aLo1MGiAmjS3BRSIoz41WGFHzClfyroBk0Uw2I5AFU9ufNqVuvdMIMU3jKh6R8/9XEM+c8JA3Lf0IGFGCc4vQKci8qr+1JE+0NiwQlnyKdxwAf4Jt1huWpOwJHiS5Caa6tthHrzkjqOfoO72eqsE7WJtJuKR0mYkKD+Tr6M/T7Ks2yh1mhIHyNoAqShNfI7eY/5nP5liyNwT+NT2gr7SQsYln0V+hH2BMUWnF/OMPKDIkfENrcW/GrZqGCGbuRMsQdbyT0bvqnUZoe2wdQGmuiwKauQCV8CpXiTd3ooPuF9AoLxqlwA9n6mTs69pD6X8ww6Q31qSXBe0yO4vK2bZuncvq8rXgh4RaFyo3d7SaItbMsIfCUJdhOAupAli0xjMEEy+bjjllXgyep8O27HkZ7+1qRrM5LAEQu1BD77Bazgb4vz8pKz+c8B5fr27MEV3MMs83fQjuH2FNHWGpaX4
本文标题:【算法】 小谈斜率优化
文章作者:Qiuly
发布时间:2019年04月28日 - 00:00
最后更新:2019年05月07日 - 14:46
原始链接:http://qiulyblog.github.io/2019/04/28/[算法]斜率优化/
许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。